
WfCommons
Release 0.5-dev

Mar 06, 2021

Quickstart

1 Support 3
1.1 Installation . 3
1.2 The WfCommons Project . 4
1.3 Parsing Workflow Execution Logs . 5
1.4 Analyzing Traces . 6
1.5 Generating Workflows . 8
1.6 User API Reference . 11
1.7 Developer API Reference . 35

Python Module Index 67

Index 69

i

ii

WfCommons, Release 0.5-dev

WfCommons is a community framework for enabling scientific workflow research and development. This Python
package provides a collection of tools for:

• Analyzing traces of actual workflow executions;

• Producing recipes structures for creating workflow recipes for workflow generation; and

• Generating synthetic realistic workflow traces.

Fig. 1: The WfCommons conceptual architecture.

Quickstart 1

https://badge.fury.io/py/wfcommons
https://github.com/wfcommons/wfcommons/actions
https://wfcommons.org

WfCommons, Release 0.5-dev

2 Quickstart

CHAPTER 1

Support

The source code for this WfCommons’s Python package is available on GitHub. Our preferred channel to report a bug
or request a feature is via WfCommons’s Github Issues Track.

You can also reach the WfCommons team via our support email: support@wfcommons.org.

1.1 Installation

WfCommons is available on PyPI. WfCommons requires Python3.6+ and has been tested on Linux and macOS.

1.1.1 Requirements

Graphviz

WfCommons uses pygraphviz and thus needs the graphviz package installed (version 2.16 or later). You can install
graphviz easily on Linux with your favorite package manager, for example for Debian-based distributions:

$ sudo apt-get install graphviz libgraphviz-dev

and for RedHat-based distributions:

$ sudo yum install python-devel graphviz-devel

On macOS you can use the brew package manager:

$ brew install graphviz

3

http://github.com/wfcommons/wfcommons
https://github.com/wfcommons/wfcommons/issues
mailto:support@wfcommons.org
https://pypi.org/project/workflowhub
https://pygraphviz.github.io/documentation/latest/install.html
https://www.graphviz.org/

WfCommons, Release 0.5-dev

1.1.2 Installation using pip

While pip can be used to install WfCommons, we suggest the following approach for reliable installation when many
Python environments are available:

$ python3 -m pip install workflowhub

1.1.3 Retrieving the latest unstable version

If you want to use the latest WfCommons unstable version, that will contain brand new features (but also contain bugs
as the stabilization work is still underway), you may consider retrieving the latest unstable version.

Cloning from WfCommons’s GitHub repository:

$ git clone https://github.com/wfcommons/wfcommons
$ cd wfcommons
$ pip install .

1.2 The WfCommons Project

The WfCommons project is a community framework for enabling scientific workflow research and development by
providing foundational tools for analyzing workflow execution traces, and generating synthetic, yet realistic, workflow
traces that can be used to develop new techniques, algorithms and systems that can overcome the challenges of efficient
and robust execution of ever larger workflows on increasingly complex distributed infrastructures. The figure below
shows an overview of the workflow research life cycle process that integrates the three axis of the WfCommons project:

Fig. 1: The WfCommons conceptual architecture.

The first axis (Workflow Traces) of the WfCommons project targets the collection and curation of open access produc-
tion workflow executions from various scientific applications shared in a common trace format (i.e., The WfCommons
JSON Format). We keep a list of workflow execution traces in our project website.

The second axis (Workflow Generator) of the WfCommons project targets the generation of realistic synthetic work-
flow traces based on workflow execution profiles extracted from execution traces. We are constantly seeking for ad-
ditional workflow execution traces for refining or developing new workflow recipes for the WfCommons’s workflow
generator.

4 Chapter 1. Support

https://github.com/wfcommons/wfcommons
https://wfcommons.org
https://wfcommons.org/traces

WfCommons, Release 0.5-dev

The third axis (Workflow Simulator) of the WfCommons project fosters the use of simulation for the development,
evaluation, and verification of scheduling and resource provisioning algorithms (e.g., multi-objective function opti-
mization, etc.), evaluation of current and emerging computing platforms (e.g., clouds, IoT, extreme scale, etc.), among
others. We keep a list of open source workflow management systems simulators and simulation frameworks that
provide support for the WfCommons JSON format in our project website.

This Python package provides a collection of tools for:

• Analyzing traces of actual workflow executions;

• Producing recipes structures for creating workflow recipes for workflow generation; and

• Generating synthetic realistic workflow traces.

1.2.1 The WfCommons JSON Format

The WfCommons project uses a common format for representing workflow execution traces and generated synthetic
workflows traces, so that workflow simulators and simulation frameworks (that provide support for WfCommons for-
mat) can use such traces interchangeably. This common format uses a JSON specification available in the WfCommons
JSON schema GitHub repository. The current version of the WfCommons Python package uses the schema version 1.
0. The schema GitHub repository provides detailed explanation of the WfCommons JSON format (including required
fields), and also a validator script for verifying the compatibility of traces.

1.3 Parsing Workflow Execution Logs

The most common way for obtaining traces from actual workflow executions is to parse execution logs. As part of the
WfCommons project, we are constantly developing parsers for commonly used workflow management systems.

Each parser class is derived from the abstract LogsParser class. Thus, each parser provides a
build_workflow() method.

1.3.1 Makeflow

Makeflow is a workflow system for executing large complex workflows on clusters, clouds, and grids. The Makeflow
language is similar to traditional Make, so if you can write a Makefile, then you can write a Makeflow. A workflow
can be just a few commands chained together, or it can be a complex application consisting of thousands of tasks.
It can have an arbitrary DAG structure and is not limited to specific patterns. Makeflow is used on a daily basis to
execute complex scientific applications in fields such as data mining, high energy physics, image processing, and
bioinformatics. It has run on campus clusters, the Open Science Grid, NSF XSEDE machines, NCSA Blue Waters,
and Amazon Web Services. Makeflow logs provide time-stamped event traces from these executions. The following
example shows the analysis of Makeflow execution logs, stored in a local folder (execution dir), for a workflow
execution using the MakeflowLogsParser class:

from wfcommons.trace import MakeflowLogsParser

creating the parser for the Makeflow workflow
parser = MakeflowLogsParser(execution_dir='/path/to/makeflow/execution/dir/blast/
→˓chameleon-small-001/'

resource_monitor_logs_dir='/path/to/makeflow/resource/
→˓monitor/logs/dir')

generating the workflow trace object
workflow = parser.build_workflow('workflow-test')

(continues on next page)

1.3. Parsing Workflow Execution Logs 5

https://wfcommons.org/simulators
https://github.com/wfcommons/workflow-schema
https://github.com/wfcommons/workflow-schema
http://ccl.cse.nd.edu/software/makeflow/

WfCommons, Release 0.5-dev

(continued from previous page)

writing the workflow trace to a JSON file
workflow.write_json('workflow.json')

Note: The MakeflowLogsParser class requires that Makeflow workflows to run with the Resource Monitor tool
(e.g., execute the workflow using the --monitor=logs).

1.3.2 Pegasus WMS

Pegasus is being used in production to execute workflows for dozens of high-profile applications in a wide range
of scientific domains. Pegasus provides the necessary abstractions for scientists to create workflows and allows for
transparent execution of these workflows on a range of compute platforms including clusters, clouds, and national
cyberinfrastructures. Workflow execution with Pegasus includes data management, monitoring, and failure handling,
and is managed by HTCondor DAGMan. Individual workflow tasks are managed by a workload management frame-
work, HTCondor, which supervises task executions on local and remote resources. Pegasus logs provide time-stamped
event traces from these executions. The following example shows the analysis of Pegasus execution logs, stored in a
local folder (submit dir), for a workflow execution using the PegasusLogsParser class:

from wfcommons.trace import PegasusLogsParser

creating the parser for the Pegasus workflow
parser = PegasusLogsParser(submit_dir='/path/to/pegasus/submit/dir/seismology/
→˓chameleon-100p-001/')

generating the workflow trace object
workflow = parser.build_workflow('workflow-test')

writing the workflow trace to a JSON file
workflow.write_json('workflow.json')

Warning: By default, the PegasusLogsParser class assumes that the submit dir is from a Pegasus execution
with version 5.0 or later. To enable parsing of Pegasus execution logs from version 4.9 or earlier, the option
legacy=True should be used.

1.4 Analyzing Traces

Workflow execution traces have been widely used to profile and characterize workflow executions, and to build distri-
butions of workflow execution behaviors, which are used to evaluate methods and techniques in simulation or in real
conditions.

The first axis of the WfCommons project targets the analysis of actual workflow execution traces (i.e., the workflow
execution profile data and characterizations) in order to build recipes of workflow applications. These recipes con-
tain the necessary information for generating synthetic, yet realistic, workflow traces that resemble the structure and
distribution of the original workflow executions.

A list of workflow execution traces that are compatible with The WfCommons JSON Format is kept constantly updated
in our project website.

6 Chapter 1. Support

https://cctools.readthedocs.io/en/latest/resource_monitor/
http://pegasus.isi.edu
https://wfcommons.org/traces.html

WfCommons, Release 0.5-dev

1.4.1 Workflow Execution Traces

A workflow execution trace represents an actual execution of a scientific workflow on a distributed platform (e.g.,
clouds, grids, HPC, etc.). In the WfCommons project, a trace is represented in a JSON file following the schema
described in The WfCommons JSON Format section. This Python package provides a trace loader tool for importing
workflow execution traces for analysis. For instance, the code snippet below shows how a trace can be loaded using
the Trace class:

from wfcommons import Trace
trace = Trace(input_trace='/path/to/trace/file.json')

The Trace class provides a number of methods for interacting with the workflow trace, including:

• draw(): produces an image or a pdf file representing the trace.

• leaves(): gets the leaves of the workflow (i.e., the tasks without any successors).

• roots(): gets the roots of the workflow (i.e., the tasks without any predecessors).

• write_dot(): writes a dot file of the trace.

1.4.2 The Trace Analyzer

The TraceAnalyzer class provides a number of tools for analyzing collection of workflow execution traces. The
goal of the TraceAnalyzer is to perform analyzes of one or multiple workflow execution traces, and build sum-
maries of the analyzes per workflow’ task type prefix.

Note: Although any workflow execution trace represented as a Trace object (i.e., compatible with The WfCommons
JSON Format) can be appended to the TraceAnalyzer, we strongly recommend that only traces of a single work-
flow application type be appended to an analyzer object. You may though create several analyzer objects per workflow
application.

The append_trace() method allows you to include traces for analysis. The build_summary() method pro-
cesses all appended traces. The method applies probability distributions fitting to a series of data to find the best (i.e.,
minimizes the mean square error) probability distribution that represents the analyzed data. The method returns a sum-
mary of the analysis of traces in the form of a Python dictionary object in which keys are task prefixes (provided when
invoking the method) and values describe the best probability distribution fit for tasks’ runtime, and input and output
data file sizes. The code excerpt below shows an example of an analysis summary showing the best fit probability
distribution for runtime of the individuals tasks (1000Genome workflow):

"individuals": {
"runtime": {

"min": 48.846,
"max": 192.232,
"distribution": {

"name": "skewnorm",
"params": [

11115267.652937062,
-2.9628504044929433e-05,
56.03957070238482

]
}

},
...

}

1.4. Analyzing Traces 7

WfCommons, Release 0.5-dev

Workflow analysis summaries can then be used to develop Workflow Recipes, in which themselves are used to generate
realistic synthetic workflow traces.

Probability distribution fits can also be plotted by using the generate_fit_plots() or
generate_all_fit_plots() methods – plots will be saved as png files.

1.4.3 Examples

The following example shows the analysis of a set of traces, stored in a local folder, of a Seismology workflow. In
this example, we seek for finding the best probability distribution fitting for task prefixes of the Seismology workflow
(sG1IterDecon, and wrapper_siftSTFByMisfit), and generate all fit plots (runtime, and input and output
files) into the fits folder using seismology as a prefix for each generated plot:

from wfcommons import Trace, TraceAnalyzer
from os import listdir
from os.path import isfile, join

obtaining list of trace files in the folder
TRACES_PATH = "/Path/to/some/trace/folder/"
trace_files = [f for f in listdir(TRACES_PATH) if isfile(join(TRACES_PATH, f))]

creating the trace analyzer object
analyzer = TraceAnalyzer()

appending trace files to the trace analyzer
for trace_file in trace_files:

trace = Trace(input_trace=TRACES_PATH + trace_file)
analyzer.append_trace(trace)

list of workflow task name prefixes to be analyzed in each trace
workflow_tasks = ['sG1IterDecon', 'wrapper_siftSTFByMisfit']

building the trace summary
traces_summary = analyzer.build_summary(workflow_tasks, include_raw_data=True)

generating all fit plots (runtime, and input and output files)
analyzer.generate_all_fit_plots(outfile_prefix='fits/seismology')

1.5 Generating Workflows

The second axis of the WfCommons project targets the generation of realistic synthetic workflow traces with a variety
of characteristics. The WorkflowGenerator class uses recipes of workflows (as described in Analyzing Traces)
for creating many different synthetic workflows based on distributions of workflow task runtime, and input and output
file sizes. The resulting workflows are represented in the WfCommons JSON format, which is already supported by
simulation frameworks such as WRENCH.

1.5.1 Workflow Recipes

The WfCommons package provides a number of workflow recipes for generating realistic synthetic workflow traces.
Each recipe may provide their own methods for instantiating a WorkflowRecipe object depending on the properties
that define the structure of the actual workflow. For instance, the code snippet below shows how to instantiate a recipe
of the Epigenomics and 1000Genome workflows:

8 Chapter 1. Support

https://wrench-project.org

WfCommons, Release 0.5-dev

from wfcommons.generator import EpigenomicsRecipe, GenomeRecipe

creating an Epigenomics workflow recipe
epigenomics_recipe = EpigenomicsRecipe.from_sequences(num_sequence_files=2, num_
→˓lines=100, bin_size=10)

creating a 1000Genome workflow recipe
genome_recipe = GenomeRecipe.from_num_chromosomes(num_chromosomes=3, num_
→˓sequences=10000, num_populations=1)

All workflow recipes also provide a common method (from_num_tasks) for instantiating a WorkflowRecipe
object as follows:

from wfcommons.generator import EpigenomicsRecipe, GenomeRecipe

creating an Epigenomics workflow recipe
epigenomics_recipe = EpigenomicsRecipe.from_num_tasks(num_tasks=9)

creating a 1000Genome workflow recipe
genome_recipe = GenomeRecipe.from_num_tasks(num_tasks=5)

Note that num_tasks defines the upper bound for the total number of tasks in the workflow, and that each workflow
recipe may define different lower bound values so that the workflow structure is guaranteed. Please, refer to the
documentation of each workflow recipe for the lower bound values.

The current list of available workflow recipes include:

• BLASTRecipe: from wfcommons.generator import BLASTRecipe

• BWARecipe: from wfcommons.generator import BWARecipe

• CyclesRecipe: from wfcommons.generator import CyclesRecipe

• EpigenomicsRecipe: from wfcommons.generator import EpigenomicsRecipe

• GenomeRecipe: from wfcommons.generator import GenomeRecipe

• MontageRecipe: from wfcommons.generator import MontageRecipe

• SeismologyRecipe: from wfcommons.generator import SeismologyRecipe

• SoyKBRecipe: from wfcommons.generator import SoyKBRecipe

• SRASearchRecipe: from wfcommons.generator import SRASearchRecipe

Increasing/Reducing Runtime and File Sizes

Workflow recipes also allow the generation of synthetic workflows with increased/reduced runtimes and/or files sizes
determined by a factor provided by the user:

• runtime_factor: The factor of which tasks runtime will be increased/decreased.

• input_file_size_factor: The factor of which tasks input files size will be increased/decreased.

• output_file_size_factor: The factor of which tasks output files size will be increased/decreased.

The following example shows how to create a Seismology workflow recipe in which task runtime is increased by 10%,
input files by 50%, and output files reduced by 20%:

1.5. Generating Workflows 9

WfCommons, Release 0.5-dev

from wfcommons.generator import SeismologyRecipe

creating a Seismology workflow recipe with increased/decreased runtime and file
→˓sizes
recipe = SeismologyRecipe.from_num_tasks(num_tasks=100, runtime_factor=1.1, input_
→˓file_size_factor=1.5, output_file_size_factor=0.8)

1.5.2 The Workflow Generator

Synthetic workflow traces are generated using the WorkflowGenerator class. This class takes as input a
WorkflowRecipe object (see above), and provides two methods for generating synthetic workflow traces:

• build_workflow(): generates a single synthetic workflow trace based on the workflow recipe used to
instantiate the generator.

• build_workflows(): generates a number of synthetic workflow traces based on the workflow recipe used
to instantiate the generator.

The build methods use the workflow recipe for generating realistic synthetic workflow traces, in which the workflow
structure follows workflow composition rules defined in the workflow recipe, and tasks runtime, and input and output
data sizes are generated according to distributions obtained from actual workflow execution traces (see Analyzing
Traces).

Each generated trace is a represented as a Workflow object (which in itself is an extension of the NetworkX DiGraph
class). The Workflow class provides two methods for writing the generated workflow trace into files:

• write_dot(): write a DOT file of a workflow trace.

• write_json(): write a JSON file of a workflow trace.

1.5.3 Examples

The following example generates a Seismology synthetic workflow trace based on the number of pair of signals to
estimate earthquake STFs (num_pairs), builds a synthetic workflow trace, and writes the synthetic trace to a JSON
file.

from wfcommons import WorkflowGenerator
from wfcommons.generator import SeismologyRecipe

creating a Seismology workflow recipe based on the number
of pair of signals to estimate earthquake STFs
recipe = SeismologyRecipe.from_num_pairs(num_pairs=10)

creating an instance of the workflow generator with the
Seismology workflow recipe
generator = WorkflowGenerator(recipe)

generating a synthetic workflow trace of the Seismology workflow
workflow = generator.build_workflow()

writing the synthetic workflow trace into a JSON file
workflow.write_json('seismology-workflow.json')

The example below generates a number of Cycles (agroecosystem) synthetic workflow traces based on the upper bound
number of tasks allowed per workflow.

10 Chapter 1. Support

https://networkx.github.io/documentation/stable/reference/classes/digraph.html

WfCommons, Release 0.5-dev

from wfcommons import WorkflowGenerator
from wfcommons.generator import CyclesRecipe

creating a Cycles workflow recipe based on the number of tasks per workflow
recipe = CyclesRecipe.from_num_tasks(num_tasks=1000)

creating an instance of the workflow generator with the
Cycles workflow recipe
generator = WorkflowGenerator(recipe)

generating 10 synthetic workflow traces of the Cycles workflow
workflows_list = generator.build_workflows(num_workflows=10)

writing each synthetic workflow trace into a JSON file
count = 1
for workflow in workflows_list:

workflow.write_json('cycles-workflow-{:02}.json'.format(count))
count += 1

1.6 User API Reference

The user API reference targets users who want to use WfCommons Python package for analyzing traces or generating
realistic synthetic workflow traces, using existing workflow recipes already implemented in this Python package. Users
are NOT expected to develop new workflow recipes.

1.6.1 wfcommons.common

wfcommons.common.file

class wfcommons.common.file.File(name: str, size: int, link: wfcommons.common.file.FileLink,
logger: Optional[logging.Logger] = None)

Bases: object

Representation of a file.

Parameters

• name (str) – The name of the file.

• size (int) – File size in KB.

• link (FileLink) – Type of file link.

• logger (Logger) – The logger where to log information/warning or errors.

as_dict()→ Dict[KT, VT]
A JSON representation of the file.

Returns A JSON object representation of the file.

Return type Dict

class wfcommons.common.file.FileLink
Bases: wfcommons.utils.NoValue

Type of file link.

INPUT = 'input'

1.6. User API Reference 11

WfCommons, Release 0.5-dev

OUTPUT = 'output'

wfcommons.common.task

class wfcommons.common.task.Task(name: str, task_type: wfcommons.common.task.TaskType,
runtime: float, cores: int, machine: Op-
tional[wfcommons.common.machine.Machine] = None, args:
List[str] = [], avg_cpu: Optional[float] = None, bytes_read:
Optional[int] = None, bytes_written: Optional[int] = None,
memory: Optional[int] = None, energy: Optional[int] =
None, avg_power: Optional[float] = None, priority: Op-
tional[int] = None, files: List[wfcommons.common.file.File]
= [], logger: Optional[logging.Logger] = None)

Bases: object

Representation of a task.

Parameters

• name (str) – The name of the task.

• task_type (TaskType) – The type of the task.

• runtime (float) – Task runtime in seconds.

• cores (int) – Number of cores required by the task.

• machine (Machine) – Machine on which is the task has been executed.

• args (List[str]) – List of task arguments.

• avg_cpu (float) – Average CPU utilization in %.

• bytes_read (int) – Total bytes read in KB.

• bytes_written (int) – Total bytes written in KB.

• memory (int) – Memory (resident set) size of the process in KB.

• energy (int) – Total energy consumption in kWh.

• avg_power (float) – Average power consumption in W.

• priority (int) – Task priority.

• files (List[File]) – List of input/output files used by the task.

• logger (Logger) – The logger where to log information/warning or errors.

as_dict()→ Dict[KT, VT]
A JSON representation of the task.

Returns A JSON object representation of the task.

Return type Dict

class wfcommons.common.task.TaskType
Bases: wfcommons.utils.NoValue

Task type.

AUXILIARY = 'auxiliary'

COMPUTE = 'compute'

TRANSFER = 'transfer'

12 Chapter 1. Support

WfCommons, Release 0.5-dev

wfcommons.common.machine

class wfcommons.common.machine.Machine(name: str, cpu: Dict[str,
Union[int, str]], system: Op-
tional[wfcommons.common.machine.MachineSystem]
= None, architecture: Optional[str] = None, mem-
ory: Optional[int] = None, release: Optional[str]
= None, hashcode: Optional[str] = None, logger:
Optional[logging.Logger] = None)

Bases: object

Representation of one compute machine.

Parameters

• name (str) – Machine node name.

• cpu (Dict[str, Union[int, str]]) – A dictionary containing information about
the CPU specification. Must at least contains two fields: count (number of CPU cores) and
speed (CPU speed of each core in MHz).

cpu = {
'count': 48,
'speed': 1200

}

• system (MachineSystem) – Machine system (linux, macos, windows).

• architecture (str) – Machine architecture (e.g., x86_64, ppc).

• memory (int) – Total machine’s RAM memory in KB.

• release (str) – Machine release.

• hashcode (str) – MD5 Hashcode for the Machine.

• logger (Logger) – The logger where to log information/warning or errors.

as_dict()→ Dict[KT, VT]
A JSON representation of the machine.

Returns A JSON object representation of the machine.

Return type Dict

class wfcommons.common.machine.MachineSystem
Bases: wfcommons.utils.NoValue

Machine system type.

LINUX = 'linux'

MACOS = 'macos'

WINDOWS = 'windows'

1.6. User API Reference 13

WfCommons, Release 0.5-dev

wfcommons.common.workflow

class wfcommons.common.workflow.Workflow(name: str, description: Optional[str] = None,
wms_name: Optional[str] = None, wms_version:
Optional[str] = None, wms_url: Optional[str]
= None, executed_at: Optional[str] = None,
makespan: Optional[int] = 0.0)

Bases: networkx.classes.digraph.DiGraph

Representation of a workflow. The workflow representation is an extension of the NetworkX DiGraph class.

Parameters

• name (str) – Workflow name.

• description (str) – Workflow trace description.

• wms_name (str) – WMS name.

• wms_version (str) – WMS version.

• wms_url (str) – URL for the WMS website.

• executed_at (str) – Workflow start timestamp in the ISO 8601 format.

• makespan (int) – Workflow makespan in seconds.

write_dot(dot_filename: str = None)→ None
Write a dot file of the workflow trace.

Parameters dot_filename (str) – DOT output file name.

write_json(json_filename: Optional[str] = None)→ None
Write a JSON file of the workflow trace.

Parameters json_filename (str) – JSON output file name.

1.6.2 wfcommons.trace

wfcommons.trace.trace

class wfcommons.trace.trace.Trace(input_trace: str, schema_file: Optional[str] = None, logger:
Optional[logging.Logger] = None)

Bases: object

Representation of one execution of one workflow on a set of machines

Trace(input_trace = 'trace.json')

Parameters

• input_trace (str) – The JSON trace.

• schema_file (str) – The path to the JSON schema that defines the trace. If no schema
file is provided, it will look for a local copy of the WorkflowHub schema, and if not available
it will fetch the latest schema from the WorkflowHub schema GitHub repository.

• logger (Logger) – The logger where to log information/warning or errors.

draw(output: Optional[str] = None, extension: str = ’pdf’)→ None
Produce an image or a pdf file representing the trace.

14 Chapter 1. Support

https://networkx.github.io/documentation/stable/reference/classes/digraph.html
https://github.com/workflowhub/workflow-schema

WfCommons, Release 0.5-dev

Parameters

• output (str) – Name of the output file.

• extension – Type of the file extension (pdf, png, or svg).

leaves()→ List[str]
Get the leaves of the workflow (i.e., the tasks without any successors).

Returns List of leaves

Return type List[str]

roots()→ List[str]
Get the roots of the workflow (i.e., the tasks without any predecessors).

Returns List of roots

Return type List[str]

write_dot(output: Optional[str] = None)→ None
Write a dot file of the trace.

Parameters output (str) – The output dot file name (optional).

wfcommons.trace.trace_analyzer

class wfcommons.trace.trace_analyzer.TraceAnalyzer(logger: Optional[logging.Logger]
= None)

Bases: object

Set of tools for analyzing collections of traces.

Parameters logger (Logger) – The logger where to log information/warning or errors (op-
tional).

append_trace(trace: wfcommons.trace.trace.Trace)→ None
Append a workflow trace object to the trace analyzer.

trace = Trace(input_trace = 'trace.json', schema = 'schema.json')
trace_analyzer = TraceAnalyzer()
trace_analyzer.append_trace(trace)

Parameters trace (Trace) – A workflow trace object.

build_summary(tasks_list: List[str], include_raw_data: Optional[bool] = True)→ Dict[str, Dict[str,
Any]]

Analyzes appended traces and produce a summary of the analysis per task prefix.

workflow_tasks = ['sG1IterDecon', 'wrapper_siftSTFByMisfit']
traces_summary = trace_analyzer.build_summary(workflow_tasks, include_raw_
→˓data=False)

Parameters

• tasks_list (List[str]) – List of workflow tasks prefix (e.g., mProject, sol2sanger,
add_replace)

• include_raw_data (bool) – Whether to include the raw data in the trace summary.

Returns A summary of the analysis of traces in the form of a dictionary in which keys are task
prefixes.

1.6. User API Reference 15

WfCommons, Release 0.5-dev

Return type Dict[str, Dict[str, Any]]

generate_all_fit_plots(outfile_prefix: Optional[str] = None)→ None
Produce fit plots as images for each entry of the summary analysis. For entries in which there are no
distribution (i.e., constant value), no plot will be generated.

Parameters outfile_prefix (str) – Prefix to be attached to each generated plot file name
(optional).

generate_fit_plots(trace_element: wfcommons.trace.trace_analyzer.TraceElement, out-
file_prefix: Optional[str] = None)→ None

Produce fit plots as images for each entry of a trace element generated by the summary analysis. For
entries in which there are no distribution (i.e., constant value), no plot will be generated.

Parameters

• trace_element (TraceElement) – Workflow element for which the fit plots will be
generated.

• outfile_prefix (str) – Prefix to be attached to each generated plot file name (op-
tional).

class wfcommons.trace.trace_analyzer.TraceElement
Bases: wfcommons.utils.NoValue

An enumeration.

INPUT = ('input', 'Input File Size (bytes)')

OUTPUT = ('output', 'Input File Size (bytes)')

RUNTIME = ('runtime', 'Runtime (s)')

wfcommons.trace.logs.makeflow

class wfcommons.trace.logs.makeflow.MakeflowLogsParser(execution_dir: str, re-
source_monitor_logs_dir:
str, description: Op-
tional[str] = None, logger:
Optional[logging.Logger] =
None)

Bases: wfcommons.trace.logs.abstract_logs_parser.LogsParser

Parse Makeflow submit directory to generate workflow trace.

Parameters

• execution_dir (str) – Makeflow workflow execution directory (contains .mf and
.makeflowlog files).

• resource_monitor_logs_dir (str) – Resource Monitor log files directory.

• description (str) – Workflow trace description.

• logger (Logger) – The logger where to log information/warning or errors (optional).

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Create workflow trace based on the workflow execution logs.

Parameters workflow_name (str) – The workflow name.

Returns A workflow trace object.

16 Chapter 1. Support

WfCommons, Release 0.5-dev

Return type Workflow

wfcommons.trace.logs.pegasus

class wfcommons.trace.logs.pegasus.PegasusLogsParser(submit_dir: str, description:
Optional[str] = None, ig-
nore_auxiliary: Optional[bool]
= True, legacy: Optional[bool]
= False, logger: Op-
tional[logging.Logger] =
None)

Bases: wfcommons.trace.logs.abstract_logs_parser.LogsParser

Parse Pegasus submit directory to generate workflow trace.

Parameters

• submit_dir (str) – Pegasus submit directory.

• legacy (bool) – Whether the submit directory is from a Pegasus 4.x version.

• description (str) – Workflow trace description.

• ignore_auxiliary (bool) – Ignore auxiliary jobs.

• logger (Logger) – The logger where to log information/warning or errors (optional).

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Create workflow trace based on the workflow execution logs.

Parameters workflow_name (str) – The workflow name.

Returns A workflow trace object.

Return type Workflow

1.6.3 wfcommons.generator

wfcommons.generator.generator

class wfcommons.generator.generator.WorkflowGenerator(workflow_recipe: wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe,
logger: Op-
tional[logging.Logger] =
None)

Bases: object

A generator of synthetic workflow traces based on workflow recipes obtained from the analysis of real workflow
execution traces.

Parameters

• workflow_recipe (WorkflowRecipe) – The workflow recipe to be used for this
generator.

• logger (Logger) – The logger where to log information/warning or errors (optional).

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace based on the workflow recipe used to instantiate the generator.

1.6. User API Reference 17

WfCommons, Release 0.5-dev

Parameters workflow_name (str) – The workflow name.

Returns A synthetic workflow trace object.

Return type Workflow

build_workflows(num_workflows: int)→ List[wfcommons.common.workflow.Workflow]
Generate a number of synthetic workflow traces based on the workflow recipe used to instantiate the
generator.

Parameters num_workflows (int) – The number of workflows to be generated.

Returns A list of synthetic workflow trace objects.

Return type List[Workflow]

wfcommons.generator.workflow.blast_recipe

class wfcommons.generator.workflow.blast_recipe.BLASTRecipe(num_subsample:
Optional[int] =
2, data_footprint:
Optional[int] = 0,
num_tasks: Op-
tional[int] = 5,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A BLAST workflow recipe class for creating synthetic workflow traces.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a BLAST workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

18 Chapter 1. Support

WfCommons, Release 0.5-dev

Return type Workflow

classmethod from_num_subsample(num_subsample: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe

Instantiate a BLAST workflow recipe that will generate synthetic workflows using the defined number of
subsample.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BLAST workflow recipe object that will generate synthetic workflows using the
defined number of subsample.

Return type BLASTRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe

Instantiate a BLAST workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 5).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BLAST workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type BLASTRecipe

1.6. User API Reference 19

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.bwa_recipe

class wfcommons.generator.workflow.bwa_recipe.BWARecipe(num_subsample:
Optional[int] = 2,
data_footprint: Op-
tional[int] = 0, num_tasks:
Optional[int] = 5,
runtime_factor: Op-
tional[float] = 1.0,
input_file_size_factor:
Optional[float] = 1.0,
output_file_size_factor:
Optional[float] = 1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A BLAST workflow recipe class for creating synthetic workflow traces.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a BWA workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_subsample(num_subsample: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe

Instantiate a BWA workflow recipe that will generate synthetic workflows using the defined number of
subsample.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

20 Chapter 1. Support

WfCommons, Release 0.5-dev

Returns A BWA workflow recipe object that will generate synthetic workflows using the defined
number of subsample.

Return type BWARecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe

Instantiate a BWA workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 6).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BWA workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type BWARecipe

wfcommons.generator.workflow.cycles_recipe

class wfcommons.generator.workflow.cycles_recipe.CyclesRecipe(num_points:
Optional[int] =
1, num_crops:
Optional[int] =
1, num_params:
Optional[int] =
4, data_footprint:
Optional[int] =
0, num_tasks:
Optional[int] = 7,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A Cycles workflow recipe class for creating synthetic workflow traces.

Parameters

• num_points (int) – The number of points of the spatial grid cell.

1.6. User API Reference 21

WfCommons, Release 0.5-dev

• num_crops (int) – The number of crops being evaluated.

• num_params (int) – The number of parameter values from the simulation matrix.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a Cycles workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe

Instantiate a Cycles workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 7).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Cycles workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type CyclesRecipe

classmethod from_points_and_crops(num_points: int, num_crops: int,
num_params: int, runtime_factor: Op-
tional[float] = 1.0, input_file_size_factor: Op-
tional[float] = 1.0, output_file_size_factor:
Optional[float] = 1.0) → wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe

Instantiate a Cycles workflow recipe that will generate synthetic workflows using the defined number of
points, crops, and params.

Parameters

22 Chapter 1. Support

WfCommons, Release 0.5-dev

• num_points (int) – The number of points of the spatial grid cell.

• num_crops (int) – The number of crops being evaluated.

• num_params (int) – The number of parameter values from the simulation matrix.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Cycles workflow recipe object that will generate synthetic workflows using the de-
fined number of points, crops, and params.

Return type CyclesRecipe

1.6. User API Reference 23

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.epigenomics_recipe

class wfcommons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe(num_sequence_files:
Op-
tional[int]
=
1,
num_lines:
Op-
tional[int]
=
10,
bin_size:
Op-
tional[int]
=
10,
data_footprint:
Op-
tional[int]
=
0,
num_tasks:
Op-
tional[int]
=
9,
run-
time_factor:
Op-
tional[float]
=
1.0,
in-
put_file_size_factor:
Op-
tional[float]
=
1.0,
out-
put_file_size_factor:
Op-
tional[float]
=
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

An Epigenomics workflow recipe class for creating synthetic workflow traces.

Parameters

• num_sequence_files (int) – Number of FASTQ files processed by the workflow.

• num_lines (int) – Number of lines in each FASTQ file.

• bin_size (int) – Number of DNA and protein sequence information to be processed by
each computational task.

24 Chapter 1. Support

WfCommons, Release 0.5-dev

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: str = None)→ wfcommons.common.workflow.Workflow
Generate a synthetic workflow trace of an Epigenomics workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe

Instantiate an Epigenomics workflow recipe that will generate synthetic workflows up to the total number
of tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 9).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An Epigenomics workflow recipe object that will generate synthetic workflows up to
the total number of tasks provided.

Return type EpigenomicsRecipe

classmethod from_sequences(num_sequence_files: int, num_lines: int, bin_size:
int, runtime_factor: Optional[float] = 1.0, in-
put_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe

Instantiate an Epigenomics workflow recipe that will generate synthetic workflows using the defined num-
ber of sequence files, lines, and bin size.

Parameters

• num_sequence_files (int) – Number of FASTQ files processed by the workflow.

• num_lines (int) – Number of lines in each FASTQ file.

• bin_size (int) – Number of DNA and protein sequence information to be processed
by each computational task.

1.6. User API Reference 25

WfCommons, Release 0.5-dev

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An Epigenomics workflow recipe object that will generate synthetic workflows using
the defined number of sequence files, lines, and bin size.

Return type EpigenomicsRecipe

wfcommons.generator.workflow.genome_recipe

class wfcommons.generator.workflow.genome_recipe.GenomeRecipe(num_chromosomes:
Optional[int] = 1,
num_sequences:
Optional[int] = 1,
num_populations:
Optional[int] =
1, data_footprint:
Optional[int] =
0, num_tasks:
Optional[int] = 5,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A 1000Genome workflow recipe class for creating synthetic workflow traces.

Parameters

• num_chromosomes (int) – The number of chromosomes evaluated in the workflow
execution.

• num_sequences (int) – The number of sequences per chromosome file.

• num_populations (int) – The number of populations being evaluated.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

26 Chapter 1. Support

WfCommons, Release 0.5-dev

build_workflow(workflow_name: str = None)→ wfcommons.common.workflow.Workflow
Generate a synthetic workflow trace of a 1000Genome workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_chromosomes(num_chromosomes: int, num_sequences: int,
num_populations: int, runtime_factor: Optional[float]
= 1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe

Instantiate a 1000Genome workflow recipe that will generate synthetic workflows using the defined num-
ber of chromosomes, sequences, and populations.

Parameters

• num_chromosomes (int) – The number of chromosomes evaluated in the workflow
execution.

• num_sequences (int) – The number of sequences per chromosome file.

• num_populations (int) – The number of populations being evaluated.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A 1000Genome workflow recipe object that will generate synthetic workflows using
the defined number of chromosomes, sequences, and populations.

Return type GenomeRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe

Instantiate a 1000Genome workflow recipe that will generate synthetic workflows up to the total number
of tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 5).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A 1000Genome workflow recipe object that will generate synthetic workflows up to the
total number of tasks provided.

Return type GenomeRecipe

1.6. User API Reference 27

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.montage_recipe

class wfcommons.generator.workflow.montage_recipe.MontageDataset
Bases: wfcommons.utils.NoValue

An enumeration of Montage datasets.

DSS = 'dss'

TWOMASS = '2mass'

class wfcommons.generator.workflow.montage_recipe.MontageRecipe(dataset: Op-
tional[wfcommons.generator.workflow.montage_recipe.MontageDataset]
= <Montage-
Dataset.DSS>,
num_bands:
Optional[int]
= 1, de-
gree: Op-
tional[float]
= 0.5,
data_footprint:
Optional[int]
= 0,
num_tasks:
Optional[int]
= 133, run-
time_factor:
Op-
tional[float]
= 1.0, in-
put_file_size_factor:
Op-
tional[float]
= 1.0, out-
put_file_size_factor:
Op-
tional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe,
wfcommons.generator.workflow.montage_recipe._MontagetaskRatios

A Montage workflow recipe class for creating synthetic workflow traces. In this workflow recipe, traces will
follow different recipes for different MontageDataset.

Parameters

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

• num_bands (int) – The number of bands (e.g., red, blue, and green) used by the work-
flow.

• degree (float) – The size (in degrees) to be used for the width/height of the final mosaic.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

28 Chapter 1. Support

WfCommons, Release 0.5-dev

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: str = None)→ wfcommons.common.workflow.Workflow
Generate a synthetic workflow trace of a Montage workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_degree(dataset: wfcommons.generator.workflow.montage_recipe.MontageDataset,
num_bands: int, degree: float, runtime_factor: Optional[float]
= 1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.montage_recipe.MontageRecipe

Instantiate a Montage workflow recipe that will generate synthetic workflows using the defined dataset,
number of bands, and degree.

Parameters

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

• num_bands (int) – The number of bands (e.g., red, blue, and green) used by the work-
flow (at least 1).

• degree (float) – The size (in degrees) to be used for the width/height of the final
mosaic (at least 0.5).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Montage workflow recipe object that will generate synthetic workflows using the
defined dataset, number of bands, and degree.

Return type MontageRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.montage_recipe.MontageRecipe

Instantiate a Montage workflow recipe that will generate synthetic workflows up to the total number of
tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 133).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

1.6. User API Reference 29

WfCommons, Release 0.5-dev

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Montage workflow recipe object that will generate synthetic workflows up to the
total number of tasks provided.

Return type MontageRecipe

wfcommons.generator.workflow.seismology_recipe

class wfcommons.generator.workflow.seismology_recipe.SeismologyRecipe(num_pairs:
Op-
tional[int]
= 2,
data_footprint:
Op-
tional[int]
= 0,
num_tasks:
Op-
tional[int]
= 3,
run-
time_factor:
Op-
tional[float]
= 1.0,
in-
put_file_size_factor:
Op-
tional[float]
= 1.0,
out-
put_file_size_factor:
Op-
tional[float]
=
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A Seismology workflow recipe class for creating synthetic workflow traces.

Parameters

• num_pairs (int) – The number of pair of signals to estimate earthquake STFs.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

30 Chapter 1. Support

WfCommons, Release 0.5-dev

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a Seismology workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_pairs(num_pairs: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe

Instantiate a Seismology workflow recipe that will generate synthetic workflows using the defined number
of pairs.

Parameters

• num_pairs (int) – The number of pair of signals to estimate earthquake STFs (at least
2).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Seismology workflow recipe object that will generate synthetic workflows using the
defined number of pairs.

Return type SeismologyRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe

Instantiate a Seismology workflow recipe that will generate synthetic workflows up to the total number of
tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 3).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Seismology workflow recipe object that will generate synthetic workflows up to the
total number of tasks provided.

Return type SeismologyRecipe

1.6. User API Reference 31

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.soykb_recipe

class wfcommons.generator.workflow.soykb_recipe.SoyKBRecipe(num_fastq_files:
Optional[int] = 2,
num_chromosomes:
Optional[int] =
1, data_footprint:
Optional[int] = 0,
num_tasks: Op-
tional[int] = 14,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A SoyKB workflow recipe class for creating synthetic workflow traces.

Parameters

• num_fastq_files (int) – The number of FASTQ files to be analyzed.

• num_chromosomes (int) – The number of chromosomes.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a SoyKB workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe

Instantiate a SoyKB workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

32 Chapter 1. Support

WfCommons, Release 0.5-dev

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 14).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A SoyKB workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type SoyKBRecipe

classmethod from_sequences(num_fastq_files: int, num_chromosomes: int, runtime_factor:
Optional[float] = 1.0, input_file_size_factor: Optional[float] =
1.0, output_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe

Instantiate a SoyKB workflow recipe that will generate synthetic workflows using the defined number of
FASTQ files and chromosomes.

Parameters

• num_fastq_files (int) – The number of FASTQ files to be analyzed (at least 2).

• num_chromosomes (int) – The number of chromosomes (range [1,22].

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A SoyKB workflow recipe object that will generate synthetic workflows using the de-
fined number of FASTQ files and chromosomes.

Return type SoyKBRecipe

1.6. User API Reference 33

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.srasearch_recipe

class wfcommons.generator.workflow.srasearch_recipe.SRASearchRecipe(num_accession:
Op-
tional[int]
= 2,
data_footprint:
Op-
tional[int]
= 0,
num_tasks:
Op-
tional[int]
= 3, run-
time_factor:
Op-
tional[float]
= 1.0,
in-
put_file_size_factor:
Op-
tional[float]
= 1.0,
out-
put_file_size_factor:
Op-
tional[float]
= 1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

An SRA Search workflow recipe class for creating synthetic workflow traces.

Parameters

• num_accession (int) – The number of NCBI accession numbers.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of an SRA Search workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

34 Chapter 1. Support

WfCommons, Release 0.5-dev

classmethod from_num_accession(num_accession: int, runtime_factor: Optional[float]
= 1.0, input_file_size_factor: Optional[float] = 1.0,
output_file_size_factor: Optional[float] = 1.0)→ wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe

Instantiate an SRA Search workflow recipe that will generate synthetic workflows using the defined num-
ber of pairs.

Parameters

• num_accession (int) – The number of NCBI accession numbers.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An SRA Search workflow recipe object that will generate synthetic workflows using
the defined number of pairs.

Return type SRASearchRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe

Instantiate an SRA Search workflow recipe that will generate synthetic workflows up to the total number
of tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 6).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An SRA Search workflow recipe object that will generate synthetic workflows up to
the total number of tasks provided.

Return type SRASearchRecipe

1.7 Developer API Reference

The developer API reference targets developers and researchers who want to contribute to the WfCommons project
by, for example, developing novel techniques for trace analysis, developing new workflow recipes, etc. The developer
API reference documentation includes detailed information for interacting with all classes and methods that compose
this Python package.

1.7. Developer API Reference 35

WfCommons, Release 0.5-dev

1.7.1 wfcommons.utils

class wfcommons.utils.NoValue
Bases: enum.Enum

An enumeration.

wfcommons.utils.best_fit_distribution(data: List[float], logger: Optional[logging.Logger] =
None)→ Tuple

Fit a list of values to a distribution.

Parameters

• data (List[float]) – List of values to be fitted to a distribution.

• logger (Logger) – The logger uses to output debug information.

Returns The name of the distribution and its parameters.

Return type Tuple

wfcommons.utils.generate_rvs(distribution: Dict[KT, VT], min_value: float, max_value: float) →
float

Generate a random variable from a distribution.

Parameters

• distribution (Dict) – Distribution dictionary (name and parameters).

• min_value (float) – Minimum value accepted as a random variable.

• max_value (float) – Maximum value accepted as a random variable.

Returns Random variable generated from a distribution.

Return type float

wfcommons.utils.ncr(n: int, r: int)→ int
Calculate the number of combinations.

Parameters

• n (int) – The number of items.

• r (int) – The number of items being chosen at a time.

Returns The number of combinations.

Return type int

wfcommons.utils.read_json(trace_filename: str)→ Dict[str, Any]
Read the JSON from the file path.

Parameters trace_filename (str) – The absolute path of the trace file.

Returns The json object loaded with json data from the file

Return type Dict[str, Any]

1.7.2 wfcommons.generator

36 Chapter 1. Support

WfCommons, Release 0.5-dev

wfcommons.generator.generator

class wfcommons.generator.generator.WorkflowGenerator(workflow_recipe: wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe,
logger: Op-
tional[logging.Logger] =
None)

Bases: object

A generator of synthetic workflow traces based on workflow recipes obtained from the analysis of real workflow
execution traces.

Parameters

• workflow_recipe (WorkflowRecipe) – The workflow recipe to be used for this
generator.

• logger (Logger) – The logger where to log information/warning or errors (optional).

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace based on the workflow recipe used to instantiate the generator.

Parameters workflow_name (str) – The workflow name.

Returns A synthetic workflow trace object.

Return type Workflow

build_workflows(num_workflows: int)→ List[wfcommons.common.workflow.Workflow]
Generate a number of synthetic workflow traces based on the workflow recipe used to instantiate the
generator.

Parameters num_workflows (int) – The number of workflows to be generated.

Returns A list of synthetic workflow trace objects.

Return type List[Workflow]

1.7. Developer API Reference 37

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.abstract_recipe

class wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe(name: str,
data_footprint:
Op-
tional[int],
num_tasks:
Op-
tional[int],
run-
time_factor:
Op-
tional[float]
= 1.0, in-
put_file_size_factor:
Op-
tional[float]
= 1.0, out-
put_file_size_factor:
Op-
tional[float]
= 1.0, log-
ger: Op-
tional[logging.Logger]
= None)

Bases: abc.ABC

An abstract class of workflow recipes for creating synthetic workflow traces.

Parameters

• name (str) – The workflow recipe name.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

• logger (Logger) – The logger where to log information/warning or errors (optional).

_abc_impl = <_abc_data object>

_generate_file(extension: str, recipe: Dict[str, Any], link: wfcommons.common.file.FileLink) →
wfcommons.common.file.File

Generate a file according to a file recipe.

Parameters

• extension (str) –

• recipe (Dict[str, Any]) – Recipe for generating the file.

• link (FileLink) – Type of file link.

38 Chapter 1. Support

WfCommons, Release 0.5-dev

Returns The generated file.

Return type File

_generate_files(task_id: str, recipe: Dict[str, Any], link: wfcommons.common.file.FileLink,
files_recipe: Optional[Dict[wfcommons.common.file.FileLink, Dict[str, int]]] =
None)→ None

Generate files for a specific task ID.

Parameters

• task_id (str) – task ID.

• recipe (Dict[str, Any]) – Recipe for generating the task.

• link (FileLink) – Type of file link.

• files_recipe (Dict[FileLink, Dict[str, int]]) – Recipe for generating
task files.

_generate_task(task_name: str, task_id: str, input_files: Op-
tional[List[wfcommons.common.file.File]] = None, files_recipe: Op-
tional[Dict[wfcommons.common.file.FileLink, Dict[str, int]]] = None) →
wfcommons.common.task.Task

Generate a synthetic task.

Parameters

• task_name (str) – task name.

• task_id (str) – task ID.

• input_files (List[File]) – List of input files to be included.

• files_recipe (Dict[FileLink, Dict[str, int]]) – Recipe for generating
task files.

Returns A task object.

Return type task

_generate_task_name(prefix: str)→ str
Generate a task name from a prefix appended with an ID.

Parameters prefix (str) – task prefix.

Returns task name from prefix appended with an ID.

Return type str

_get_files_by_task_and_link(task_id: str, link: wfcommons.common.file.FileLink) →
List[wfcommons.common.file.File]

Get the list of files for a task ID and link type.

Parameters

• task_id (str) – task ID.

• link (FileLink) – Type of file link.

Returns List of files for a task ID and link type.

Return type List[File]

_workflow_recipe()→ Dict[str, Any]
Recipe for generating synthetic traces for a workflow. Recipes can be generated by using the
TraceAnalyzer.

1.7. Developer API Reference 39

WfCommons, Release 0.5-dev

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace.

Parameters workflow_name (str) – The workflow name.

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe

Instantiate a workflow recipe that will generate synthetic workflows up to the total number of tasks pro-
vided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A workflow recipe object that will generate synthetic workflows up to the total number
of tasks provided.

Return type WorkflowRecipe

wfcommons.generator.workflow.blast_recipe

class wfcommons.generator.workflow.blast_recipe.BLASTRecipe(num_subsample:
Optional[int] =
2, data_footprint:
Optional[int] = 0,
num_tasks: Op-
tional[int] = 5,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A BLAST workflow recipe class for creating synthetic workflow traces.

Parameters

40 Chapter 1. Support

WfCommons, Release 0.5-dev

• num_subsample (int) – The number of subsample the reference file will be split.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the BLAST workflow. Recipes can be generated by using the
TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a BLAST workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_subsample(num_subsample: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe

Instantiate a BLAST workflow recipe that will generate synthetic workflows using the defined number of
subsample.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BLAST workflow recipe object that will generate synthetic workflows using the
defined number of subsample.

Return type BLASTRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe

Instantiate a BLAST workflow recipe that will generate synthetic workflows up to the total number of tasks

1.7. Developer API Reference 41

WfCommons, Release 0.5-dev

provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 5).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BLAST workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type BLASTRecipe

wfcommons.generator.workflow.bwa_recipe

class wfcommons.generator.workflow.bwa_recipe.BWARecipe(num_subsample:
Optional[int] = 2,
data_footprint: Op-
tional[int] = 0, num_tasks:
Optional[int] = 5,
runtime_factor: Op-
tional[float] = 1.0,
input_file_size_factor:
Optional[float] = 1.0,
output_file_size_factor:
Optional[float] = 1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A BLAST workflow recipe class for creating synthetic workflow traces.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the BWA workflow. Recipes can be generated by using the
TraceAnalyzer.

42 Chapter 1. Support

WfCommons, Release 0.5-dev

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a BWA workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_subsample(num_subsample: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe

Instantiate a BWA workflow recipe that will generate synthetic workflows using the defined number of
subsample.

Parameters

• num_subsample (int) – The number of subsample the reference file will be split.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BWA workflow recipe object that will generate synthetic workflows using the defined
number of subsample.

Return type BWARecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe

Instantiate a BWA workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 6).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A BWA workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type BWARecipe

1.7. Developer API Reference 43

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.cycles_recipe

class wfcommons.generator.workflow.cycles_recipe.CyclesRecipe(num_points:
Optional[int] =
1, num_crops:
Optional[int] =
1, num_params:
Optional[int] =
4, data_footprint:
Optional[int] =
0, num_tasks:
Optional[int] = 7,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A Cycles workflow recipe class for creating synthetic workflow traces.

Parameters

• num_points (int) – The number of points of the spatial grid cell.

• num_crops (int) – The number of crops being evaluated.

• num_params (int) – The number of parameter values from the simulation matrix.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the Cycles workflow. Recipes can be generated by using the
TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a Cycles workflow.

Parameters workflow_name (int) – The workflow name

44 Chapter 1. Support

WfCommons, Release 0.5-dev

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe

Instantiate a Cycles workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 7).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Cycles workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type CyclesRecipe

classmethod from_points_and_crops(num_points: int, num_crops: int,
num_params: int, runtime_factor: Op-
tional[float] = 1.0, input_file_size_factor: Op-
tional[float] = 1.0, output_file_size_factor:
Optional[float] = 1.0) → wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe

Instantiate a Cycles workflow recipe that will generate synthetic workflows using the defined number of
points, crops, and params.

Parameters

• num_points (int) – The number of points of the spatial grid cell.

• num_crops (int) – The number of crops being evaluated.

• num_params (int) – The number of parameter values from the simulation matrix.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Cycles workflow recipe object that will generate synthetic workflows using the de-
fined number of points, crops, and params.

Return type CyclesRecipe

1.7. Developer API Reference 45

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.epigenomics_recipe

class wfcommons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe(num_sequence_files:
Op-
tional[int]
=
1,
num_lines:
Op-
tional[int]
=
10,
bin_size:
Op-
tional[int]
=
10,
data_footprint:
Op-
tional[int]
=
0,
num_tasks:
Op-
tional[int]
=
9,
run-
time_factor:
Op-
tional[float]
=
1.0,
in-
put_file_size_factor:
Op-
tional[float]
=
1.0,
out-
put_file_size_factor:
Op-
tional[float]
=
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

An Epigenomics workflow recipe class for creating synthetic workflow traces.

Parameters

• num_sequence_files (int) – Number of FASTQ files processed by the workflow.

• num_lines (int) – Number of lines in each FASTQ file.

• bin_size (int) – Number of DNA and protein sequence information to be processed by
each computational task.

46 Chapter 1. Support

WfCommons, Release 0.5-dev

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the Epigenomics workflow. Recipes can be generated by using
the TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: str = None)→ wfcommons.common.workflow.Workflow
Generate a synthetic workflow trace of an Epigenomics workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe

Instantiate an Epigenomics workflow recipe that will generate synthetic workflows up to the total number
of tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 9).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An Epigenomics workflow recipe object that will generate synthetic workflows up to
the total number of tasks provided.

Return type EpigenomicsRecipe

classmethod from_sequences(num_sequence_files: int, num_lines: int, bin_size:
int, runtime_factor: Optional[float] = 1.0, in-
put_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe

1.7. Developer API Reference 47

WfCommons, Release 0.5-dev

Instantiate an Epigenomics workflow recipe that will generate synthetic workflows using the defined num-
ber of sequence files, lines, and bin size.

Parameters

• num_sequence_files (int) – Number of FASTQ files processed by the workflow.

• num_lines (int) – Number of lines in each FASTQ file.

• bin_size (int) – Number of DNA and protein sequence information to be processed
by each computational task.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An Epigenomics workflow recipe object that will generate synthetic workflows using
the defined number of sequence files, lines, and bin size.

Return type EpigenomicsRecipe

wfcommons.generator.workflow.genome_recipe

class wfcommons.generator.workflow.genome_recipe.GenomeRecipe(num_chromosomes:
Optional[int] = 1,
num_sequences:
Optional[int] = 1,
num_populations:
Optional[int] =
1, data_footprint:
Optional[int] =
0, num_tasks:
Optional[int] = 5,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A 1000Genome workflow recipe class for creating synthetic workflow traces.

Parameters

• num_chromosomes (int) – The number of chromosomes evaluated in the workflow
execution.

• num_sequences (int) – The number of sequences per chromosome file.

• num_populations (int) – The number of populations being evaluated.

48 Chapter 1. Support

WfCommons, Release 0.5-dev

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_get_populations_files_recipe(index: int) → Dict[wfcommons.common.file.FileLink,
Dict[str, int]]

Get the recipe for generating a population file.

Parameters index (int) – Index of the population in the list.

Returns Recipe for generating a population file.

Return type Dict[FileLink, Dict[str, int]]

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the 1000Genome workflow. Recipes can be generated by using
the TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: str = None)→ wfcommons.common.workflow.Workflow
Generate a synthetic workflow trace of a 1000Genome workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_chromosomes(num_chromosomes: int, num_sequences: int,
num_populations: int, runtime_factor: Optional[float]
= 1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe

Instantiate a 1000Genome workflow recipe that will generate synthetic workflows using the defined num-
ber of chromosomes, sequences, and populations.

Parameters

• num_chromosomes (int) – The number of chromosomes evaluated in the workflow
execution.

• num_sequences (int) – The number of sequences per chromosome file.

• num_populations (int) – The number of populations being evaluated.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

1.7. Developer API Reference 49

WfCommons, Release 0.5-dev

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A 1000Genome workflow recipe object that will generate synthetic workflows using
the defined number of chromosomes, sequences, and populations.

Return type GenomeRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe

Instantiate a 1000Genome workflow recipe that will generate synthetic workflows up to the total number
of tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 5).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A 1000Genome workflow recipe object that will generate synthetic workflows up to the
total number of tasks provided.

Return type GenomeRecipe

wfcommons.generator.workflow.montage_recipe

class wfcommons.generator.workflow.montage_recipe.MontageDataset
Bases: wfcommons.utils.NoValue

An enumeration of Montage datasets.

DSS = 'dss'

TWOMASS = '2mass'

50 Chapter 1. Support

WfCommons, Release 0.5-dev

class wfcommons.generator.workflow.montage_recipe.MontageRecipe(dataset: Op-
tional[wfcommons.generator.workflow.montage_recipe.MontageDataset]
= <Montage-
Dataset.DSS>,
num_bands:
Optional[int]
= 1, de-
gree: Op-
tional[float]
= 0.5,
data_footprint:
Optional[int]
= 0,
num_tasks:
Optional[int]
= 133, run-
time_factor:
Op-
tional[float]
= 1.0, in-
put_file_size_factor:
Op-
tional[float]
= 1.0, out-
put_file_size_factor:
Op-
tional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe,
wfcommons.generator.workflow.montage_recipe._MontagetaskRatios

A Montage workflow recipe class for creating synthetic workflow traces. In this workflow recipe, traces will
follow different recipes for different MontageDataset.

Parameters

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

• num_bands (int) – The number of bands (e.g., red, blue, and green) used by the work-
flow.

• degree (float) – The size (in degrees) to be used for the width/height of the final mosaic.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

1.7. Developer API Reference 51

WfCommons, Release 0.5-dev

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the Montage workflow. Recipes can be generated by using the
TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: str = None)→ wfcommons.common.workflow.Workflow
Generate a synthetic workflow trace of a Montage workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_degree(dataset: wfcommons.generator.workflow.montage_recipe.MontageDataset,
num_bands: int, degree: float, runtime_factor: Optional[float]
= 1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.montage_recipe.MontageRecipe

Instantiate a Montage workflow recipe that will generate synthetic workflows using the defined dataset,
number of bands, and degree.

Parameters

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

• num_bands (int) – The number of bands (e.g., red, blue, and green) used by the work-
flow (at least 1).

• degree (float) – The size (in degrees) to be used for the width/height of the final
mosaic (at least 0.5).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Montage workflow recipe object that will generate synthetic workflows using the
defined dataset, number of bands, and degree.

Return type MontageRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.montage_recipe.MontageRecipe

Instantiate a Montage workflow recipe that will generate synthetic workflows up to the total number of
tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 133).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

52 Chapter 1. Support

WfCommons, Release 0.5-dev

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Montage workflow recipe object that will generate synthetic workflows up to the
total number of tasks provided.

Return type MontageRecipe

class wfcommons.generator.workflow.montage_recipe._MontagetaskRatios
Bases: object

An auxiliary class for generating Montage tasks.

_get_max_num_tasks(task_name: str, degree: float, dataset: wfcom-
mons.generator.workflow.montage_recipe.MontageDataset)→ int

Get the maximum number of tasks that can be generated for a defined task.

Parameters

• task_name (str) – The task name prefix.

• degree (float) – The size (in degrees) to be used for the width/height of the final
mosaic.

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

Returns The maximum number of tasks that can be generated for a defined task.

Return type int

_get_max_rate_increase(task_name: str, dataset: wfcom-
mons.generator.workflow.montage_recipe.MontageDataset) →
int

Get the maximum rate of increase for a task prefix by increasing the workflow degree.

Parameters

• task_name (str) – The task name prefix.

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

Returns The maximum rate of increase for a task prefix by increasing the workflow degree.

Return type int

_get_num_tasks(task_name: str, degree: float, dataset: wfcom-
mons.generator.workflow.montage_recipe.MontageDataset)→ int

Get a random number of tasks to be generated for a task prefix and workflow degree.

Parameters

• task_name (str) – The task name prefix.

• degree (float) – The size (in degrees) to be used for the width/height of the final
mosaic.

• dataset (MontageDataset) – The dataset to use for the mosaic (e.g., 2mass, dss).

Returns A random number of tasks to be generated for a task prefix and workflow degree.

Return type int

tasks_ratios = {<MontageDataset.TWOMASS>: {'mProject': (68, 44, 21), 'mDiffFit': (414, 112, 52), 'mBackground': (68, 23, 4)}, <MontageDataset.DSS>: {'mProject': (4, 4, 4), 'mDiffFit': (120, 134, 118), 'mBackground': (4, 4, 4)}}

1.7. Developer API Reference 53

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.seismology_recipe

class wfcommons.generator.workflow.seismology_recipe.SeismologyRecipe(num_pairs:
Op-
tional[int]
= 2,
data_footprint:
Op-
tional[int]
= 0,
num_tasks:
Op-
tional[int]
= 3,
run-
time_factor:
Op-
tional[float]
= 1.0,
in-
put_file_size_factor:
Op-
tional[float]
= 1.0,
out-
put_file_size_factor:
Op-
tional[float]
=
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A Seismology workflow recipe class for creating synthetic workflow traces.

Parameters

• num_pairs (int) – The number of pair of signals to estimate earthquake STFs.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the Seismology workflow. Recipes can be generated by using the
TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

54 Chapter 1. Support

WfCommons, Release 0.5-dev

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a Seismology workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_pairs(num_pairs: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe

Instantiate a Seismology workflow recipe that will generate synthetic workflows using the defined number
of pairs.

Parameters

• num_pairs (int) – The number of pair of signals to estimate earthquake STFs (at least
2).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Seismology workflow recipe object that will generate synthetic workflows using the
defined number of pairs.

Return type SeismologyRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe

Instantiate a Seismology workflow recipe that will generate synthetic workflows up to the total number of
tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 3).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A Seismology workflow recipe object that will generate synthetic workflows up to the
total number of tasks provided.

Return type SeismologyRecipe

1.7. Developer API Reference 55

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.soykb_recipe

class wfcommons.generator.workflow.soykb_recipe.SoyKBRecipe(num_fastq_files:
Optional[int] = 2,
num_chromosomes:
Optional[int] =
1, data_footprint:
Optional[int] = 0,
num_tasks: Op-
tional[int] = 14,
runtime_factor:
Optional[float]
= 1.0, in-
put_file_size_factor:
Optional[float]
= 1.0, out-
put_file_size_factor:
Optional[float] =
1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

A SoyKB workflow recipe class for creating synthetic workflow traces.

Parameters

• num_fastq_files (int) – The number of FASTQ files to be analyzed.

• num_chromosomes (int) – The number of chromosomes.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the SoyKB workflow. Recipes can be generated by using the
TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of a SoyKB workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

56 Chapter 1. Support

WfCommons, Release 0.5-dev

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe

Instantiate a SoyKB workflow recipe that will generate synthetic workflows up to the total number of tasks
provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 14).

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A SoyKB workflow recipe object that will generate synthetic workflows up to the total
number of tasks provided.

Return type SoyKBRecipe

classmethod from_sequences(num_fastq_files: int, num_chromosomes: int, runtime_factor:
Optional[float] = 1.0, input_file_size_factor: Optional[float] =
1.0, output_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe

Instantiate a SoyKB workflow recipe that will generate synthetic workflows using the defined number of
FASTQ files and chromosomes.

Parameters

• num_fastq_files (int) – The number of FASTQ files to be analyzed (at least 2).

• num_chromosomes (int) – The number of chromosomes (range [1,22].

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns A SoyKB workflow recipe object that will generate synthetic workflows using the de-
fined number of FASTQ files and chromosomes.

Return type SoyKBRecipe

1.7. Developer API Reference 57

WfCommons, Release 0.5-dev

wfcommons.generator.workflow.srasearch_recipe

class wfcommons.generator.workflow.srasearch_recipe.SRASearchRecipe(num_accession:
Op-
tional[int]
= 2,
data_footprint:
Op-
tional[int]
= 0,
num_tasks:
Op-
tional[int]
= 3, run-
time_factor:
Op-
tional[float]
= 1.0,
in-
put_file_size_factor:
Op-
tional[float]
= 1.0,
out-
put_file_size_factor:
Op-
tional[float]
= 1.0)

Bases: wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

An SRA Search workflow recipe class for creating synthetic workflow traces.

Parameters

• num_accession (int) – The number of NCBI accession numbers.

• data_footprint (int) – The upper bound for the workflow total data footprint (in
bytes).

• num_tasks (int) – The upper bound for the total number of tasks in the workflow.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

_abc_impl = <_abc_data object>

_add_merge_task(workflow, input_files, parents)→ wfcommons.common.task.Task
Create a merge task.

Parameters

• workflow – Workflow object instance.

• input_files – List of input files for the task.

58 Chapter 1. Support

WfCommons, Release 0.5-dev

• parents – List of parent tasks.

Rtype workflow Workflow

Rtype input_files List[File]

Rtype parents List[Task]

Returns A merge task object.

_workflow_recipe()→ Dict[KT, VT]
Recipe for generating synthetic traces of the SRA Search workflow. Recipes can be generated by using the
TraceAnalyzer.

Returns A recipe in the form of a dictionary in which keys are task prefixes.

Return type Dict[str, Any]

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Generate a synthetic workflow trace of an SRA Search workflow.

Parameters workflow_name (int) – The workflow name

Returns A synthetic workflow trace object.

Return type Workflow

classmethod from_num_accession(num_accession: int, runtime_factor: Optional[float]
= 1.0, input_file_size_factor: Optional[float] = 1.0,
output_file_size_factor: Optional[float] = 1.0)→ wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe

Instantiate an SRA Search workflow recipe that will generate synthetic workflows using the defined num-
ber of pairs.

Parameters

• num_accession (int) – The number of NCBI accession numbers.

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An SRA Search workflow recipe object that will generate synthetic workflows using
the defined number of pairs.

Return type SRASearchRecipe

classmethod from_num_tasks(num_tasks: int, runtime_factor: Optional[float] =
1.0, input_file_size_factor: Optional[float] = 1.0, out-
put_file_size_factor: Optional[float] = 1.0) → wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe

Instantiate an SRA Search workflow recipe that will generate synthetic workflows up to the total number
of tasks provided.

Parameters

• num_tasks (int) – The upper bound for the total number of tasks in the workflow (at
least 6).

1.7. Developer API Reference 59

WfCommons, Release 0.5-dev

• runtime_factor (float) – The factor of which tasks runtime will be in-
creased/decreased.

• input_file_size_factor (float) – The factor of which tasks input files size will
be increased/decreased.

• output_file_size_factor (float) – The factor of which tasks output files size
will be increased/decreased.

Returns An SRA Search workflow recipe object that will generate synthetic workflows up to
the total number of tasks provided.

Return type SRASearchRecipe

1.7.3 wfcommons.trace

wfcommons.trace.schema

class wfcommons.trace.schema.SchemaValidator(schema_file: Optional[str] = None, logger:
Optional[logging.Logger] = None)

Bases: object

Validate JSON files against WorkflowHub schema. If schema file path is not provided, it will look for a local
copy of the WorkflowHub schema, and if not available it will fetch the latest schema from the WorkflowHub
schema GitHub repository.

Parameters

• schema_file (str) – JSON schema file path.

• logger (Logger) – The logger where to log information/warning or errors.

_load_schema(schema_file: Optional[str] = None)
Load the schema file. If schema file path is not provided, it will look for a local copy of the WorkflowHub
schema, and if not available it will fetch the latest schema from the GitHub repository.

Parameters schema_file (str) – JSON schema file path.

Returns The JSON schema.

Return type json

_semantic_validation(data: Dict[str, Any])
Validate the semantics of the JSON workflow execution trace.

Parameters data (Dict[str, Any]) – Workflow trace in JSON format.

_syntax_validation(data: Dict[str, Any])
Validate the JSON workflow execution trace against the schema.

Parameters data (Dict[str, Any]) – Workflow trace in JSON format.

validate_trace(data: Dict[str, Any])
Perform syntax validation against the schema, and semantic validation.

Parameters data (Dict[str, Any]) – Workflow trace in JSON format.

wfcommons.trace.trace

class wfcommons.trace.trace.Trace(input_trace: str, schema_file: Optional[str] = None, logger:
Optional[logging.Logger] = None)

Bases: object

60 Chapter 1. Support

https://github.com/workflowhub/workflow-schema
https://github.com/workflowhub/workflow-schema

WfCommons, Release 0.5-dev

Representation of one execution of one workflow on a set of machines

Trace(input_trace = 'trace.json')

Parameters

• input_trace (str) – The JSON trace.

• schema_file (str) – The path to the JSON schema that defines the trace. If no schema
file is provided, it will look for a local copy of the WorkflowHub schema, and if not available
it will fetch the latest schema from the WorkflowHub schema GitHub repository.

• logger (Logger) – The logger where to log information/warning or errors.

draw(output: Optional[str] = None, extension: str = ’pdf’)→ None
Produce an image or a pdf file representing the trace.

Parameters

• output (str) – Name of the output file.

• extension – Type of the file extension (pdf, png, or svg).

leaves()→ List[str]
Get the leaves of the workflow (i.e., the tasks without any successors).

Returns List of leaves

Return type List[str]

roots()→ List[str]
Get the roots of the workflow (i.e., the tasks without any predecessors).

Returns List of roots

Return type List[str]

write_dot(output: Optional[str] = None)→ None
Write a dot file of the trace.

Parameters output (str) – The output dot file name (optional).

wfcommons.trace.trace_analyzer

class wfcommons.trace.trace_analyzer.TraceAnalyzer(logger: Optional[logging.Logger]
= None)

Bases: object

Set of tools for analyzing collections of traces.

Parameters logger (Logger) – The logger where to log information/warning or errors (op-
tional).

append_trace(trace: wfcommons.trace.trace.Trace)→ None
Append a workflow trace object to the trace analyzer.

trace = Trace(input_trace = 'trace.json', schema = 'schema.json')
trace_analyzer = TraceAnalyzer()
trace_analyzer.append_trace(trace)

Parameters trace (Trace) – A workflow trace object.

1.7. Developer API Reference 61

https://github.com/workflowhub/workflow-schema

WfCommons, Release 0.5-dev

build_summary(tasks_list: List[str], include_raw_data: Optional[bool] = True)→ Dict[str, Dict[str,
Any]]

Analyzes appended traces and produce a summary of the analysis per task prefix.

workflow_tasks = ['sG1IterDecon', 'wrapper_siftSTFByMisfit']
traces_summary = trace_analyzer.build_summary(workflow_tasks, include_raw_
→˓data=False)

Parameters

• tasks_list (List[str]) – List of workflow tasks prefix (e.g., mProject, sol2sanger,
add_replace)

• include_raw_data (bool) – Whether to include the raw data in the trace summary.

Returns A summary of the analysis of traces in the form of a dictionary in which keys are task
prefixes.

Return type Dict[str, Dict[str, Any]]

generate_all_fit_plots(outfile_prefix: Optional[str] = None)→ None
Produce fit plots as images for each entry of the summary analysis. For entries in which there are no
distribution (i.e., constant value), no plot will be generated.

Parameters outfile_prefix (str) – Prefix to be attached to each generated plot file name
(optional).

generate_fit_plots(trace_element: wfcommons.trace.trace_analyzer.TraceElement, out-
file_prefix: Optional[str] = None)→ None

Produce fit plots as images for each entry of a trace element generated by the summary analysis. For
entries in which there are no distribution (i.e., constant value), no plot will be generated.

Parameters

• trace_element (TraceElement) – Workflow element for which the fit plots will be
generated.

• outfile_prefix (str) – Prefix to be attached to each generated plot file name (op-
tional).

class wfcommons.trace.trace_analyzer.TraceElement
Bases: wfcommons.utils.NoValue

An enumeration.

INPUT = ('input', 'Input File Size (bytes)')

OUTPUT = ('output', 'Input File Size (bytes)')

RUNTIME = ('runtime', 'Runtime (s)')

wfcommons.trace.trace_analyzer._append_file_to_dict(extension: str, dict_obj: Dict[str,
Any], file_size: int)→ None

Add a file size to a file type extension dictionary.

Parameters

• extension (str) – File type extension.

• dict_obj (Dict[str, Any]) – Dictionary of file type extensions.

• file_size (int) – File size in bytes.

62 Chapter 1. Support

WfCommons, Release 0.5-dev

wfcommons.trace.trace_analyzer._best_fit_distribution_for_file(dict_obj, in-
clude_raw_data)
→ None

Find the best fit distribution for a file.

Parameters

• dict_obj (Dict[str, Any]) – Dictionary of file type extensions.

• include_raw_data (bool) –

wfcommons.trace.trace_analyzer._generate_fit_plots(el: Dict[KT, VT], title: str, xla-
bel: str, outfile: str, font_size: Op-
tional[int] = None, logger: Op-
tional[logging.Logger] = None)
→ None

Produce a fit plot as an image for an entry of a trace element generated by the summary analysis.

Parameters

• el (Dict) – Entry of a trace element generated by the summary analysis.

• title (str) – Plot title.

• xlabel (str) – X-axis label.

• outfile (Optional[int]) – Plot file name.

• font_size – Size of the font.

• logger (Logger) – The logger where to log information/warning or errors.

wfcommons.trace.trace_analyzer._json_format_distribution_fit(dist_tuple: Tuple)
→ Dict[str, Any]

Format the best fit distribution data into a dictionary

Parameters dist_tuple (Tuple) – Tuple containing best fit distribution name and parameters.

Returns

Return type Dict[str, Any]

wfcommons.trace.logs.abstract_logs_parser

class wfcommons.trace.logs.abstract_logs_parser.LogsParser(wms_name: str,
wms_url: Op-
tional[str] =
None, description:
Optional[str] =
None, logger: Op-
tional[logging.Logger]
= None)

Bases: abc.ABC

An abstract class of logs parser for creating workflow traces.

Parameters

• wms_name (str) – Name of the workflow system.

• wms_url (str) – URL for the workflow system.

• description (str) – Workflow trace description.

• logger (Logger) – The logger where to log information/warning or errors (optional).

1.7. Developer API Reference 63

WfCommons, Release 0.5-dev

_abc_impl = <_abc_data object>

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Create workflow trace based on the workflow execution logs.

Parameters workflow_name (str) – The workflow name.

Returns A workflow trace object.

Return type Workflow

wfcommons.trace.logs.makeflow

class wfcommons.trace.logs.makeflow.MakeflowLogsParser(execution_dir: str, re-
source_monitor_logs_dir:
str, description: Op-
tional[str] = None, logger:
Optional[logging.Logger] =
None)

Bases: wfcommons.trace.logs.abstract_logs_parser.LogsParser

Parse Makeflow submit directory to generate workflow trace.

Parameters

• execution_dir (str) – Makeflow workflow execution directory (contains .mf and
.makeflowlog files).

• resource_monitor_logs_dir (str) – Resource Monitor log files directory.

• description (str) – Workflow trace description.

• logger (Logger) – The logger where to log information/warning or errors (optional).

_abc_impl = <_abc_data object>

_create_files(files_list: List[str], link: wfcommons.common.file.FileLink, task_name: str)
Create a list of files objects.

Parameters

• files_list – list of file names.

• link – Link type for the files in the list.

• task_name – Task name.

Rtype files_list List[str]

Rtype link FileLink

Rtype task_name str

Returns List of file objects.

Return type List[File]

_parse_makeflow_log_file()
Parse the makeflow log file and update workflow task information.

_parse_resource_monitor_logs()
Parse the log files produced by resource monitor

_parse_workflow_file()
Parse the makeflow workflow file and build the workflow structure.

64 Chapter 1. Support

WfCommons, Release 0.5-dev

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Create workflow trace based on the workflow execution logs.

Parameters workflow_name (str) – The workflow name.

Returns A workflow trace object.

Return type Workflow

wfcommons.trace.logs.pegasus

class wfcommons.trace.logs.pegasus.PegasusLogsParser(submit_dir: str, description:
Optional[str] = None, ig-
nore_auxiliary: Optional[bool]
= True, legacy: Optional[bool]
= False, logger: Op-
tional[logging.Logger] =
None)

Bases: wfcommons.trace.logs.abstract_logs_parser.LogsParser

Parse Pegasus submit directory to generate workflow trace.

Parameters

• submit_dir (str) – Pegasus submit directory.

• legacy (bool) – Whether the submit directory is from a Pegasus 4.x version.

• description (str) – Workflow trace description.

• ignore_auxiliary (bool) – Ignore auxiliary jobs.

• logger (Logger) – The logger where to log information/warning or errors (optional).

_abc_impl = <_abc_data object>

_fetch_all_files(extension: str, file_name: str = ”)
Fetch all files from the directory and its hierarchy

Parameters

• extension (str) – file extension to be searched for

• file_name (str) – file_name to be searched

Returns List of file names that match

Return type List[str]

_parse_braindump()
Parse the Pegasus braindump.txt file

_parse_dag()
Parse the DAG file.

_parse_dax()
Parse the DAX file.

_parse_job_output(task)
Parse the kickstart job output file (e.g., .out.000).

Parameters task (Task) – Task object.

1.7. Developer API Reference 65

WfCommons, Release 0.5-dev

_parse_job_output_latest(task, output_file)
Parse the kickstart job output file in YAML format (e.g., .out.000).

Parameters

• task (Task) – Task object.

• output_file (str) – Output file name.

_parse_job_output_legacy(task, output_file)
Parse the kickstart job output file in XML format (e.g., .out.000).

Parameters

• task (Task) – Task object.

• output_file (str) – Output file name.

_parse_meta_file(task_name)
Parse the Pegasus meta file (generated from pegasus-integrity)

Parameters task_name (str) – Task file name.

_parse_workflow()
Parse the Workflow file.

build_workflow(workflow_name: Optional[str] = None) → wfcom-
mons.common.workflow.Workflow

Create workflow trace based on the workflow execution logs.

Parameters workflow_name (str) – The workflow name.

Returns A workflow trace object.

Return type Workflow

66 Chapter 1. Support

Python Module Index

w
wfcommons.common.file, 11
wfcommons.common.machine, 13
wfcommons.common.task, 12
wfcommons.common.workflow, 14
wfcommons.generator.generator, 17
wfcommons.generator.workflow.abstract_recipe,

38
wfcommons.generator.workflow.blast_recipe,

18
wfcommons.generator.workflow.bwa_recipe,

20
wfcommons.generator.workflow.cycles_recipe,

21
wfcommons.generator.workflow.epigenomics_recipe,

24
wfcommons.generator.workflow.genome_recipe,

26
wfcommons.generator.workflow.montage_recipe,

28
wfcommons.generator.workflow.seismology_recipe,

30
wfcommons.generator.workflow.soykb_recipe,

32
wfcommons.generator.workflow.srasearch_recipe,

34
wfcommons.trace.logs.makeflow, 16
wfcommons.trace.logs.pegasus, 17
wfcommons.trace.schema, 60
wfcommons.trace.trace, 14
wfcommons.trace.trace_analyzer, 15
wfcommons.utils, 36

67

WfCommons, Release 0.5-dev

68 Python Module Index

Index

Symbols
_abc_impl (wfcommons.generator.workflow.abstract_recipe.WorkflowRecipe

attribute), 38
_generate_file() (wfcom-

mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 38

_generate_files() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 39

_generate_task() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 39

_generate_task_name() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 39

_get_files_by_task_and_link() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 39

_load_schema() (wfcom-
mons.trace.schema.SchemaValidator method),
60

_semantic_validation() (wfcom-
mons.trace.schema.SchemaValidator method),
60

_syntax_validation() (wfcom-
mons.trace.schema.SchemaValidator method),
60

_workflow_recipe() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 39

A
append_trace() (wfcom-

mons.trace.trace_analyzer.TraceAnalyzer
method), 15

as_dict() (wfcommons.common.file.File method), 11
as_dict() (wfcommons.common.machine.Machine

method), 13
as_dict() (wfcommons.common.task.Task method),

12
AUXILIARY (wfcommons.common.task.TaskType

attribute), 12

B
best_fit_distribution() (in module wfcom-

mons.utils), 36
BLASTRecipe (class in wfcom-

mons.generator.workflow.blast_recipe), 18
build_summary() (wfcom-

mons.trace.trace_analyzer.TraceAnalyzer
method), 15

build_workflow() (wfcom-
mons.generator.generator.WorkflowGenerator
method), 17

build_workflow() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
method), 40

build_workflow() (wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe
method), 18

build_workflow() (wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe
method), 20

build_workflow() (wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe
method), 22

build_workflow() (wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe
method), 25

build_workflow() (wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe
method), 27

build_workflow() (wfcom-
mons.generator.workflow.montage_recipe.MontageRecipe
method), 29

build_workflow() (wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe
method), 31

69

WfCommons, Release 0.5-dev

build_workflow() (wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe
method), 32

build_workflow() (wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe
method), 34

build_workflow() (wfcom-
mons.trace.logs.makeflow.MakeflowLogsParser
method), 16

build_workflow() (wfcom-
mons.trace.logs.pegasus.PegasusLogsParser
method), 17

build_workflows() (wfcom-
mons.generator.generator.WorkflowGenerator
method), 18

BWARecipe (class in wfcom-
mons.generator.workflow.bwa_recipe), 20

C
COMPUTE (wfcommons.common.task.TaskType at-

tribute), 12
CyclesRecipe (class in wfcom-

mons.generator.workflow.cycles_recipe),
21

D
draw() (wfcommons.trace.trace.Trace method), 14
DSS (wfcommons.generator.workflow.montage_recipe.MontageDataset

attribute), 28

E
EpigenomicsRecipe (class in wfcom-

mons.generator.workflow.epigenomics_recipe),
24

F
File (class in wfcommons.common.file), 11
FileLink (class in wfcommons.common.file), 11
from_degree() (wfcom-

mons.generator.workflow.montage_recipe.MontageRecipe
class method), 29

from_num_accession() (wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe
class method), 34

from_num_chromosomes() (wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe
class method), 27

from_num_pairs() (wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe
class method), 31

from_num_subsample() (wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe
class method), 19

from_num_subsample() (wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe
class method), 20

from_num_tasks() (wfcom-
mons.generator.workflow.abstract_recipe.WorkflowRecipe
class method), 40

from_num_tasks() (wfcom-
mons.generator.workflow.blast_recipe.BLASTRecipe
class method), 19

from_num_tasks() (wfcom-
mons.generator.workflow.bwa_recipe.BWARecipe
class method), 21

from_num_tasks() (wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe
class method), 22

from_num_tasks() (wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe
class method), 25

from_num_tasks() (wfcom-
mons.generator.workflow.genome_recipe.GenomeRecipe
class method), 27

from_num_tasks() (wfcom-
mons.generator.workflow.montage_recipe.MontageRecipe
class method), 29

from_num_tasks() (wfcom-
mons.generator.workflow.seismology_recipe.SeismologyRecipe
class method), 31

from_num_tasks() (wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe
class method), 32

from_num_tasks() (wfcom-
mons.generator.workflow.srasearch_recipe.SRASearchRecipe
class method), 35

from_points_and_crops() (wfcom-
mons.generator.workflow.cycles_recipe.CyclesRecipe
class method), 22

from_sequences() (wfcom-
mons.generator.workflow.epigenomics_recipe.EpigenomicsRecipe
class method), 25

from_sequences() (wfcom-
mons.generator.workflow.soykb_recipe.SoyKBRecipe
class method), 33

G
generate_all_fit_plots() (wfcom-

mons.trace.trace_analyzer.TraceAnalyzer
method), 16

generate_fit_plots() (wfcom-
mons.trace.trace_analyzer.TraceAnalyzer
method), 16

generate_rvs() (in module wfcommons.utils), 36
GenomeRecipe (class in wfcom-

mons.generator.workflow.genome_recipe),
26

70 Index

WfCommons, Release 0.5-dev

I
INPUT (wfcommons.common.file.FileLink attribute), 11
INPUT (wfcommons.trace.trace_analyzer.TraceElement

attribute), 16

L
leaves() (wfcommons.trace.trace.Trace method), 15
LINUX (wfcommons.common.machine.MachineSystem

attribute), 13

M
Machine (class in wfcommons.common.machine), 13
MachineSystem (class in wfcom-

mons.common.machine), 13
MACOS (wfcommons.common.machine.MachineSystem

attribute), 13
MakeflowLogsParser (class in wfcom-

mons.trace.logs.makeflow), 16
MontageDataset (class in wfcom-

mons.generator.workflow.montage_recipe),
28

MontageRecipe (class in wfcom-
mons.generator.workflow.montage_recipe),
28

N
ncr() (in module wfcommons.utils), 36
NoValue (class in wfcommons.utils), 36

O
OUTPUT (wfcommons.common.file.FileLink attribute), 11
OUTPUT (wfcommons.trace.trace_analyzer.TraceElement

attribute), 16

P
PegasusLogsParser (class in wfcom-

mons.trace.logs.pegasus), 17

R
read_json() (in module wfcommons.utils), 36
roots() (wfcommons.trace.trace.Trace method), 15
RUNTIME (wfcommons.trace.trace_analyzer.TraceElement

attribute), 16

S
SchemaValidator (class in wfcom-

mons.trace.schema), 60
SeismologyRecipe (class in wfcom-

mons.generator.workflow.seismology_recipe),
30

SoyKBRecipe (class in wfcom-
mons.generator.workflow.soykb_recipe),
32

SRASearchRecipe (class in wfcom-
mons.generator.workflow.srasearch_recipe),
34

T
Task (class in wfcommons.common.task), 12
TaskType (class in wfcommons.common.task), 12
Trace (class in wfcommons.trace.trace), 14
TraceAnalyzer (class in wfcom-

mons.trace.trace_analyzer), 15
TraceElement (class in wfcom-

mons.trace.trace_analyzer), 16
TRANSFER (wfcommons.common.task.TaskType at-

tribute), 12
TWOMASS (wfcommons.generator.workflow.montage_recipe.MontageDataset

attribute), 28

V
validate_trace() (wfcom-

mons.trace.schema.SchemaValidator method),
60

W
wfcommons.common.file (module), 11
wfcommons.common.machine (module), 13
wfcommons.common.task (module), 12
wfcommons.common.workflow (module), 14
wfcommons.generator.generator (module), 17
wfcommons.generator.workflow.abstract_recipe

(module), 38
wfcommons.generator.workflow.blast_recipe

(module), 18
wfcommons.generator.workflow.bwa_recipe

(module), 20
wfcommons.generator.workflow.cycles_recipe

(module), 21
wfcommons.generator.workflow.epigenomics_recipe

(module), 24
wfcommons.generator.workflow.genome_recipe

(module), 26
wfcommons.generator.workflow.montage_recipe

(module), 28
wfcommons.generator.workflow.seismology_recipe

(module), 30
wfcommons.generator.workflow.soykb_recipe

(module), 32
wfcommons.generator.workflow.srasearch_recipe

(module), 34
wfcommons.trace.logs.makeflow (module), 16
wfcommons.trace.logs.pegasus (module), 17
wfcommons.trace.schema (module), 60
wfcommons.trace.trace (module), 14
wfcommons.trace.trace_analyzer (module),

15

Index 71

WfCommons, Release 0.5-dev

wfcommons.utils (module), 36
WINDOWS (wfcommons.common.machine.MachineSystem

attribute), 13
Workflow (class in wfcommons.common.workflow), 14
WorkflowGenerator (class in wfcom-

mons.generator.generator), 17
WorkflowRecipe (class in wfcom-

mons.generator.workflow.abstract_recipe),
38

write_dot() (wfcom-
mons.common.workflow.Workflow method),
14

write_dot() (wfcommons.trace.trace.Trace method),
15

write_json() (wfcom-
mons.common.workflow.Workflow method),
14

72 Index

	Support
	Installation
	The WfCommons Project
	Parsing Workflow Execution Logs
	Analyzing Traces
	Generating Workflows
	User API Reference
	Developer API Reference

	Python Module Index
	Index

